Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Microorganisms ; 10(8)2022 Aug 12.
Article in English | MEDLINE | ID: covidwho-2023929

ABSTRACT

Emerging and re-emerging viruses have been a challenge in public health in recent decades. Host-targeted antivirals (HTA) directed at cellular molecules or pathways involved in virus multiplication represent an interesting strategy to combat viruses presently lacking effective chemotherapy. HTA could provide a wide range of agents with inhibitory activity against current and future viruses that share similar host requirements and reduce the possible selection of antiviral-resistant variants. Nucleotide metabolism is one of the more exploited host metabolic pathways as a potential antiviral target for several human viruses. This review focuses on the antiviral properties of the inhibitors of pyrimidine and purine nucleotide biosynthesis, with an emphasis on the rate-limiting enzymes dihydroorotate dehydrogenase (DHODH) and inosine monophosphate dehydrogenase (IMPDH) for which there are old and new drugs active against a broad spectrum of pathogenic viruses.

2.
Viruses ; 14(5)2022 04 28.
Article in English | MEDLINE | ID: covidwho-1820410

ABSTRACT

New strategies to rapidly develop broad-spectrum antiviral therapies are urgently required for emerging and re-emerging viruses. Host-targeting antivirals (HTAs) that target the universal host factors necessary for viral replication are the most promising approach, with broad-spectrum, foresighted function, and low resistance. We and others recently identified that host dihydroorotate dehydrogenase (DHODH) is one of the universal host factors essential for the replication of many acute-infectious viruses. DHODH is a rate-limiting enzyme catalyzing the fourth step in de novo pyrimidine synthesis. Therefore, it has also been developed as a therapeutic target for many diseases relying on cellular pyrimidine resources, such as cancers, autoimmune diseases, and viral or bacterial infections. Significantly, the successful use of DHODH inhibitors (DHODHi) against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection further supports the application prospects. This review focuses on the advantages of HTAs and the antiviral effects of DHODHi with clinical applications. The multiple functions of DHODHi in inhibiting viral replication, stimulating ISGs expression, and suppressing cytokine storms make DHODHi a potent strategy against viral infection.


Subject(s)
COVID-19 Drug Treatment , Dihydroorotate Dehydrogenase , Virus Diseases , Viruses , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Dihydroorotate Dehydrogenase/antagonists & inhibitors , Humans , Pyrimidines , SARS-CoV-2/drug effects , Virus Diseases/drug therapy , Virus Replication/drug effects , Viruses/drug effects
3.
Viruses ; 12(12)2020 12 05.
Article in English | MEDLINE | ID: covidwho-966929

ABSTRACT

The ongoing pandemic spread of the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) demands skillful strategies for novel drug development, drug repurposing and cotreatments, in particular focusing on existing candidates of host-directed antivirals (HDAs). The developmental drug IMU-838, currently being investigated in a phase 2b trial in patients suffering from autoimmune diseases, represents an inhibitor of human dihydroorotate dehydrogenase (DHODH) with a recently proven antiviral activity in vitro and in vivo. Here, we established an analysis system for assessing the antiviral potency of IMU-838 and DHODH-directed back-up drugs in cultured cell-based infection models. By the use of SARS-CoV-2-specific immunofluorescence, Western blot, in-cell ELISA, viral yield reduction and RT-qPCR methods, we demonstrated the following: (i) IMU-838 and back-ups show anti-SARS-CoV-2 activity at several levels of viral replication, i.e., protein production, double-strand RNA synthesis, and release of infectious virus; (ii) antiviral efficacy in Vero cells was demonstrated in a micromolar range (IMU-838 half-maximal effective concentration, EC50, of 7.6 ± 5.8 µM); (iii) anti-SARS-CoV-2 activity was distinct from cytotoxic effects (half-cytotoxic concentration, CC50, >100 µM); (iv) the drug in vitro potency was confirmed using several Vero lineages and human cells; (v) combination with remdesivir showed enhanced anti-SARS-CoV-2 activity; (vi) vidofludimus, the active determinant of IMU-838, exerted a broad-spectrum activity against a selection of major human pathogenic viruses. These findings strongly suggest that developmental DHODH inhibitors represent promising candidates for use as anti-SARS-CoV-2 therapeutics.


Subject(s)
Antiviral Agents/pharmacology , Drug Repositioning , Oxidoreductases Acting on CH-CH Group Donors/antagonists & inhibitors , SARS-CoV-2/drug effects , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Alanine/analogs & derivatives , Alanine/pharmacology , Animals , Antiviral Agents/chemistry , Chlorocebus aethiops , Clinical Trials, Phase II as Topic , Dihydroorotate Dehydrogenase , Drug Discovery , Drug Synergism , Humans , Vero Cells , Virus Replication/drug effects , COVID-19 Drug Treatment
4.
Protein Cell ; 11(10): 723-739, 2020 10.
Article in English | MEDLINE | ID: covidwho-697126

ABSTRACT

Emerging and re-emerging RNA viruses occasionally cause epidemics and pandemics worldwide, such as the on-going outbreak of the novel coronavirus SARS-CoV-2. Herein, we identified two potent inhibitors of human DHODH, S312 and S416, with favorable drug-likeness and pharmacokinetic profiles, which all showed broad-spectrum antiviral effects against various RNA viruses, including influenza A virus, Zika virus, Ebola virus, and particularly against SARS-CoV-2. Notably, S416 is reported to be the most potent inhibitor so far with an EC50 of 17 nmol/L and an SI value of 10,505.88 in infected cells. Our results are the first to validate that DHODH is an attractive host target through high antiviral efficacy in vivo and low virus replication in DHODH knock-out cells. This work demonstrates that both S312/S416 and old drugs (Leflunomide/Teriflunomide) with dual actions of antiviral and immuno-regulation may have clinical potentials to cure SARS-CoV-2 or other RNA viruses circulating worldwide, no matter such viruses are mutated or not.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus Infections/drug therapy , Oxidoreductases/antagonists & inhibitors , Pandemics , Pneumonia, Viral/drug therapy , RNA Viruses/drug effects , Thiazoles/pharmacology , Animals , Antiviral Agents/therapeutic use , Betacoronavirus/drug effects , Betacoronavirus/physiology , Binding Sites/drug effects , COVID-19 , Cell Line , Coronavirus Infections/virology , Crotonates/pharmacology , Cytokine Release Syndrome/drug therapy , Dihydroorotate Dehydrogenase , Drug Evaluation, Preclinical , Gene Knockout Techniques , Humans , Hydroxybutyrates , Influenza A virus/drug effects , Leflunomide/pharmacology , Mice , Mice, Inbred BALB C , Nitriles , Orthomyxoviridae Infections/drug therapy , Oseltamivir/therapeutic use , Oxidoreductases/metabolism , Oxidoreductases Acting on CH-CH Group Donors , Pneumonia, Viral/virology , Protein Binding/drug effects , Pyrimidines/biosynthesis , RNA Viruses/physiology , SARS-CoV-2 , Structure-Activity Relationship , Thiazoles/therapeutic use , Toluidines/pharmacology , Ubiquinone/metabolism , Virus Replication/drug effects
5.
Virol Sin ; 35(6): 725-733, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-659402

ABSTRACT

We recently reported that inhibitors against human dihydroorotate dehydrogenase (DHODH) have broad-spectrum antiviral activities including their inhibitory efficacies on SARS-CoV-2 replication in infected cells. However, there are limited data from clinical studies to prove the application of DHODH inhibitors in Coronavirus disease 2019 (COVID-19) patients. In the present study, we evaluated Leflunomide, an approved DHODH inhibitor widely used as a modest immune regulator to treat autoimmune diseases, in treating COVID-19 disease with a small-scale of patients. Cases of 10 laboratory-confirmed COVID-19 patients of moderate type with obvious opacity in the lung were included. Five of the patients were treated with Leflunomide, and another five were treated as blank controls without a placebo. All the patients accepted standard supportive treatment for COVID-19. The patients given Leflunomide had a shorter viral shedding time (median of 5 days) than the controls (median of 11 days, P = 0.046). The patients given Leflunomide also showed a significant reduction in C-reactive protein levels, indicating that immunopathological inflammation was well controlled. No obvious adverse effects were observed in Leflunomide-treated patients, and they all discharged from the hospital faster than controls. This preliminary study on a small-scale compassionate use of Leflunomide provides clues for further understanding of Leflunomide as a potential antiviral drug against COVID-19.


Subject(s)
Antiviral Agents/administration & dosage , COVID-19 Drug Treatment , Leflunomide/administration & dosage , Aged , C-Reactive Protein/metabolism , COVID-19/diagnostic imaging , COVID-19/metabolism , COVID-19/virology , China , Female , Humans , Lung/diagnostic imaging , Lung/drug effects , Male , Middle Aged , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Virus Replication/drug effects , Virus Shedding/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL